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Abstract 

Artificial intelligence (AI) and machine learning (ML) offer organisations expanding 

opportunities for greater control and efficiency and more timely and accurate results, but at 

the same time bring escalating emergent risks. Two significant and complementary 

approaches to the organisational challenges posed by AI and ML are model risk management 

(MRM) and enterprise risk management (ERM). In this review we identify the key literature 

on technology risk and organisations and use it to consider how effectively MRM policies 

nested within an ERM approach can resolve the risk conundrum created by the growing 

complexity of algorithmic technologies. We develop here a framework of the elements of 

MRM and ERM and the links between them. We first look at MRM and highlight four areas 

of model development (data, design, implementation and performance) and their associated 

risks. We then consider ERM and how digital technology implementation affects the entire 

organisation. We highlight the need to move away from a measurement and compliance 

approach to risk towards a broader and more proactive approach, aimed at organising 

technology risk, to which our MRM/ERM framework contributes. We argue that careful 

attention to the roles, aspirations and incentives of human operators and other stakeholders 

will be critical in making this transition successfully. Our review has implications for future 

research in several areas, including the design of human-machine hybrid systems, 

development of organisational best practice in managing risks arising from algorithmic bias, 

the design of effective government regulation for artificial intelligence and machine learning, 

and the role of algorithms in regulatory regimes.  
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Introduction 

As digital technologies and services have blossomed over the last two decades, a 

number of tensions at the heart of automation have come into sharp focus: our growing 

ability to design and build increasingly sophisticated algorithmic systems creates huge 

potential for gaining greater control over our environment through larger datasets, more 

accurate and timely results, greater flexibility and scalability and the ability to solve more 

challenging problems; but at the same time, there is an apparent loss of human control, 

because as the technology becomes more complex, it often also becomes less transparent and 

accountable. Second, the widespread use of advanced technology, big data, predictive 

analytics and automation promises gains regarding the way organisations manage risk. But 

emergent technology also increases the risks organisations face, due to issues of complexity, 

lack of transparency and susceptibility to cyber-attacks.  

Business products and services, with decision engines which are driven by 

increasingly complex algorithmic technologies, require sophisticated models which may 

operate without day-to-day human intervention, but which do require effective model risk 

management (MRM) to ensure that products and services are produced and/or delivered as 

intended and that the business of the organisation and its stakeholders are protected from 

costly errors (Kosoff, 2016; Shi, Young, Lantsman, & Wei, 2016). Model risk includes the 

development, validation, implementation and on-going monitoring of each model and its 

place in the general model portfolio, as well as the risks arising from the model portfolio in 

aggregate. MRM also needs to be integrated within the firm’s existing overarching risk 

management approach, or its enterprise risk management (ERM) so that it can effectively 

interact with various other business risks that the firm faces which need to be managed, 

monitored and controlled. However, research on how these two forms of risk management 

combine is scarce. In this article, we develop a framework of the elements of model risk 

management and enterprise risk management and the linkages between them. 

This is important as the increasing scale of digital technology use entails that 

problems with technology risk and governance models can be highly significant. For 

example, high profile failures such as the UK 2020 A level algorithm scandal (Haines, 2020; 

Hern, 2020), a racially biased algorithm used in the US criminal justice system (Dieterich, 

Mendoza, & Brennan, 2016; Larson, Mattu, Kirchner, & Angwin, 2016), and the Facebook 
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Cambridge Analytica scandal (Cadwalladr & Graham-Harrison, 2018; HouseofCommons & 

DCMSCommittee, 2019) have highlighted the concern over inadequate risk and governance 

approaches within digital technology introduction. 

A recent review of the field argued that “to date, most research in management and 

economics has emphasized the benefits of using algorithms to improve allocation and 

coordination in complex markets, facilitate efficient decision-making within firms, and 

improve organizational learning” (Kellogg, Valentine, & Christin, 2020: 366). There is good 

evidence to suggest that algorithmic models can have a positive impact on the efficiency and 

innovation of organisations (e.g., (Athey & Stern, 2002; Hall, Horton, & Knoepfle, 2021; M. 

Liu, Brynjolffson, & Dowlatabadi, 2018a). However, risk management and governance 

methods for such applications are not yet well-established, leading to problems like 

algorithmic bias, lack of transparency, poor data management, proliferation of 

misinformation and increased vulnerability to cyber-attack (CDEI, 2020; Cresci, 2020; 

Doshi-Velez & Kortz, 2017; Hackett, 2015; He, Frost, & Pinsker, 2020; J. R. Jackson, 2018; 

WEF, 2020).  

Discussion of risk often appears in predictions for societal level outcomes, such as the 

impact on employment and labour markets (Autor, Levy, & Murnane, 2003; Butcher, 2013; 

Campa, 2019; Goos & Manning, 2007; McIntosh, 2013), surveillance (Cobbe & Morison, 

2019; Myers West, 2019; Zuboff, 2015, 2019), and the nature of capitalism (Manzarolle and 

Smeltzer 2011, Gillespie 2014, van Dijck 2014). While these bodies of work are important, 

we focus here on the issue of how risk plays out within organisations as new algorithmic 

capabilities are introduced, and how these new capabilities interact with organisational 

governance and culture. 

We respond to calls for “further work to develop understanding of how risks are 

managed for the entire organisation” (Bromiley, McShane, Nair, & Rustambekov, 2015: 317) 

by considering the following question: how effectively MRM policies nested within an ERM 

approach can resolve the risk conundrum created by increasingly complex algorithmic 

technologies. 

The review is organised as follows. In the next section, we examine the principal 

areas of technology and risk. We then explore the issue of model risk management and 

highlight the four aspects of our guiding framework and the risks which arise in connection 

with each aspect. Through this analysis we present a case that designing, implementing and 
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managing models effectively requires as much attention to human, organisational and 

governance factors as it does to the design of the algorithms themselves. At each stage, we 

identify relevant debates, highlight the risks attached to the activity and give illustrative case 

studies. In the second part of the literature review we highlight enterprise risk management 

and how technology implementation affects the entire organisation.  

Technology, organisations and risk 

Technology is integral to all organisations and pervades organisational cultures, 

structures and processes. Research on risk in technology at the organisational level has tended 

to focus on technology project risk, highlighting the design and implementation of IT and IS 

(Jørgensen & Jordan, 2016). The body of work predominantly highlights risk analysis, which 

treats risks as quantifiable and seeks “to calculate risks - typically in statistical terms as the 

probability of an event multiplied by the magnitude of the resulting gains or losses – so that 

appropriate actions [can] be taken.” (Hardy, Maguire, Power, & Tsoukas, 2020: 1033). Risk 

management follows once the risk has been assessed, and, according to the Society for Risk 

Analysis, is concerned with “exploring opportunities on the one hand, and avoiding losses, 

accidents, and disasters on the other” to achieve “the proper risk level” (SRA, 2019: 5). Such 

judgements determine the risk “tolerance” or “appetite” of the organization (Bromiley et al., 

2015; Power, 2009).  With emerging technologies, however, risk maybe uncertain and so 

mechanisms for observation and monitoring may be also unclear. Further, as scientists and 

industry may not agree, either on methods or on data for assessing potential risks and 

consequences, various interpretations of the science may emerge, together with ambiguity 

and possible divergent perceptions of risks and benefits associated with the technologies 

(Falkner & Jaspers, 2012; Renn, 2011).  

Although complex systems will give rise to risk incidents, in line with “normal 

accident theory” (Perrow, 1984), the proliferation and scale of technology deployment may 

give rise to greater incidence of normal accidents (Agarwal, Argarwal, Kayyali, & Stephens, 

2020). Technological risks are becoming more prominent within organisations, and more 

dangerous, primarily because of the scale, complexity and interconnectivity of devices and 

models (Bevan, Ganguly, Kaminski, & Rezek, 2016; CDEI, 2020).  

To address such issues, research has focused on two broad areas: (1) Design and 

development principles concerned with the creation and implementation of specific pieces of 

technology or models. This would relate to the quality of data used in the models, the quality 
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of the model specification, the accuracy (and avoidance of bias) of the model and the 

adaptiveness and system protection of the model. This is often bracketed under the heading 

“model risk management” (Brotcke, 2020). (2) Controls over the models and their 

aggregation into the organisation-wide risk governance framework. This is usually labelled 

“enterprise risk management” which is concerned with the systematic and holistic nature of 

risk within an organization and how particular models or technologies integrate with the 

wider set of technologies within the organization (Bromiley et al., 2015). 

This approach is in line with recent work on risk governance, which describes risk 

governance as “the confluence of all analyses and actions relative to the development of a  

given technology”, (Renn, 2008). This would include 

(i) framing the technology in the context of its possible deployment and 

applications, benefits, and risks for various stakeholders; 

(ii) assessing those benefits and risks (including assessment of perception and 

concerns); 

(iii) evaluating other aspects that decision makers will consider before making 

decisions, such as the existence of specific economic, political or societal 

interests, or also certain issues of national security or ideology, that must be 

considered; 

(iv) identifying various risk management options, which can be combined to 

establish a strategy for the development (or not) of the technology; and  

(v) communicating about risk and benefits (Renn, 2008). 

Figure 1 shows how we conceptualise model risk as a subset of operational risk, 

which is one of a (non-exhaustive) set of risk areas managed at enterprise level. Model risk is 

further classified into individual model risk, i.e., the areas of risk which must be assessed and 

managed with respect to a single model, and aggregate model risk, which concerns the 

additional risk arising from the whole model portfolio. 
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Figure 1. Model Risk Management in relation to Enterprise Risk Management 

2.1 Model risk management (MRM) 

MRM is most developed in the financial services industry. This industry, having faced 

a systemic collapse in 2008 which was only prevented by state intervention, has since been 

addressing the origins of that crisis and reappraising and updating its approach to the 

downside of risk (Arner, Avgouleas, Busch, & Schwarcz, 2019; Haag et al., 2010; Palermo, 

Power, & Ashby, 2017). As early adopters of advanced technologies, financial services 

companies and their regulators are now at the forefront of risk management practice 

(BankofEngland, 2019; Cohn, 2019; FSB, 2017; IIA, 2013).  

According to a recent report from McKinsey, the number of models in use at large 

financial institutions is rising as much as 10 to 25 percent annually (Crespo, Kumar, 

Notebook, & Taymans, 2017), as organisations use increasingly advanced analytics 

techniques, including machine learning, to achieve higher performance standards. A typical 

model for a bank might be, for instance, a specified calculation for assigning consumer credit 

scores, into which an individual’s data could be entered, the calculation run, and a decision 

provided on whether the loan would be granted. The promise and wider application of models 

have brought into focus the need for an efficient MRM function, to ensure the development 

and validation of high-quality models across the whole organisation. 

Financial institutions typically create a policy definition of a model based on the 

mathematical approach taken to solving business problems, usually broad enough to meet the 

regulatory expectations of SR 11-7 but narrow enough not to include every spreadsheet used 
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at the bank (Bridgers, Lee, & Kosoff, 2020).  SR 11-7 and another key US banking 

regulation, OCC 2011-12, treat the term “model” as any quantitative method, system or 

approach which applies statistical, mathematical, economic or financial theories, assumptions 

and techniques to process input data into quantitative estimates (Yoost, 2013). According to 

Hill, “the great majority of financial models in use today remain essentially static collections 

of… code… designed to perform essential and well-defined computational tasks” (Hill, 2020: 

26), although he sees an increasing role for AI/ML in the next generation of smarter models. 

In applying the concept of MRM to technology risk in industries outside financial 

services, we define a model pragmatically as any attempt to predict or forecast what will 

happen given a specific set of variables and a relevant set of data. For an airline, this might 

mean modelling seat prices and loads on aircraft, for a restaurant it might mean predicting 

patterns of customer demand for different menu items, while for a telecoms operator it could 

mean predicting how many faults may arise under certain weather conditions. These 

processes are becoming less likely to be based on human judgement, and even automated 

processes are now less likely to be directly supervised by a human operator, instead perhaps 

diagnosing their own faults, or perhaps reporting to and overseen by an algorithmic 

“manager”. As a result, new opportunities for efficiency and growth arise, as do new types of 

risk.  

Model risk is only one part of technology risk, which can include cyber-attacks, 

unstable systems requiring expensive down-time, vendors failing to deliver a service, legacy 

systems that are difficult to maintain or integrate with newer systems, but which may be 

impossible to discard, outdated hardware, technology being used for purposes that it was not 

designed for, and so on. These other technology risks will be discussed in relation to 

enterprise risk management. 

2.2 Enterprise risk management 

Authors and regulators disagree on exactly what constitutes ERM. Addressing the 

variety of definitions and implementations of ERM, Power (2007) urged caution, asserting 

that ERM is an “umbrella concept” and managers should not “...assume that ERM refers 

unequivocally to a coherent set of practices.” As regulators pressure organisations to integrate 

risk management into corporate governance, new risk categories and definitions have been 

created, leading to the “risk management of everything” (Power, 2004) which Power 

ultimately concluded had resulted in the “risk management of nothing” (Power, 2009). 
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Power’s scepticism about the proliferation of new risk management structures, categories and 

processes is understandable, particularly in the immediate aftermath of the 2008 financial 

crisis. However, Power and colleagues have recently taken a more moderate and cautiously 

optimistic view (Hardy et al., 2020), suggesting that while it may be impossible to calculate 

and manage precisely every individual risk within an organisation, it is nevertheless 

worthwhile to consider how risks are organised; a process which, they argue, “involves far 

more than calculating them before they arise; it also means containing risks that do arise and 

reflecting on how to improve how they are organised in the future” (Hardy et al., 2020: 

1033). This process of organising risk, we suggest, constitutes the main business of ERM. 

Research on ERM, then, is in its infancy but several core issues have been identified 

(Bromiley et al., 2015): First, risk is most efficiently managed at the level of the enterprise 

rather than at the level of individual parts of the business. Second, major decisions at a 

strategic level by an organisation involve risk and must be managed. The competency in 

managing such risks may give an organisation a competitive advantage, allowing it to 

improve its position over rivals. 

Organisations by nature manage risks and have a variety of existing departments or 

functions ("risk functions") that identify and manage specific risks. However, each risk 

function varies in capability and in how it coordinates with other risk functions. A central 

goal and challenge of ERM is improving this capability and coordination, while integrating 

the output to provide a unified picture of risk for stakeholders and improving the 

organisation's ability to manage the risks effectively.  

ERM is evolving to address the needs of various stakeholders, who want to 

understand the broad spectrum of risks facing complex organizations to ensure they are 

appropriately managed. Regulators and debt rating agencies have increased their scrutiny on 

the risk management processes of companies.  

For our review, we turn first to model risk management. 

1. Technology and model risk management 

The design and implementation of individual algorithmic models can be 

conceptualised as a stage process, comprising four key stages: Data, design, implementation 

and performance. There is also an overarching requirement for management of the aggregate 

model risk arising from the model risk portfolio, which applies at all four stages of model 
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development and use. As shown in Figure 1, MRM can be considered a subset of operational 

risk, which is one of a range of risk areas managed at enterprise level. 

Models are dependent on the availability of suitable data. Organisations may develop 

a model to exploit data that they already have, or they may have an idea for a model but need 

to gather the required data. Either way, data acquisition and management are critical parts of 

the model development process. Design encompasses an organisation’s awareness that 

existing models require updating, the specification of goals and requirements for a new 

model, prototyping, “sandbox” testing to create a proof-of-concept, and in some cases, small-

scale pilot live deployments to get user feedback and debug any issues that arise in a real-

world environment. Implementation is the process of deploying the model at scale in the 

real world. At this stage, the model needs to be integrated carefully into its environment, and 

any arising issues dealt with. Performance must then be monitored and managed over the 

lifetime of the model, including regular recalibration and audits to ensure that the model 

continues to be fit for purpose.  

Model risk management is a process by which the risks associated with these stages 

and their overall combination are assessed, for each model, and for the organisation’s 

portfolio of models. In this section, we examine the four stages and their associated risks, 

followed by a short overview of model portfolio management. 

3.1 Stage 1: Data 

Organisations today typically have access to very large quantities of consumer, 

employee and market data – so-called Big Data. Indeed, it was only after these very large 

data pools became available as “data exhaust” from the Internet in the 2000s that ML 

algorithms (conceived in the 1980s) finally had sufficient learning power to achieve anything 

useful (Gray & Suri, 2019; LeCun, 2018; Marcus & Davis, 2019; Myers West, 2019; Zuboff, 

2015). The current business environment and the unfolding technological possibilities create 

new opportunities, with attendant risks, for organisations which have access to large 

quantities of consumer and employee data, not least through the development of models, 

including ML models, for prediction and decision-making.  

Figures 2a and 2b below illustrate a possible organisational flow through the process of 

defining, acquiring, testing and protecting data to be used in an algorithmic prediction or 

decision model. Figure 2a gives an overview of the end-to-end process, while Figure 2b 
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illustrates the tests which need to be applied to determine whether the available data is 

adequate for use in the model. 

 

Figure 2a. Data considerations 

 

Figure 2b. Data viability tests 

3.1.1 Data risks 

3.1.1.1 Data accessibility 

In practice, organisations are sometimes unable to exploit useful information that they 

hold because of organisational, regulatory or IT infrastructure limitations. For example, a 

large North American hospital developed a prototype AI-enabled system to improve patient 

care, but were unable to implement the project because the data required was distributed 
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across twenty legacy systems, and retrieval would be too complex (Vial, Jiang, Giannelia, & 

Cameron, 2021). It is therefore critical that early consideration is given to how data will be 

accessed at scale when the model goes live. Vial, Jiang et al. (2021) point out that data 

accessibility is often treated as a technical problem which can be addressed in the later phases 

of the project life cycle, but in fact it is a complex management problem which happens to 

involve technology. Failing to address data accessibility at an early stage can result in 

unexpected extra costs or even jeopardise the project. 

3.1.1.2 Data acquisition 

When an organisation acquires personal data, whether directly from customers or 

employees, or by buying a database from a third party, data protection law requires that 

records are kept demonstrating what individuals have consented to, what they were told, and 

when and how they consented (ICO, 2021a, 2021b). In practice, however, many 

organisations are still failing to obtain adequate consent for their data-gathering activities 

(CDEI, 2020).  

3.1.1.3 Data sharing and sale 

There is a longstanding trend towards monetising data, established by Google, 

Facebook and other large Silicon Valley companies (Zuboff, 2015, 2019), which means that 

there is a large market for data. For instance, a 2018 Gartner survey of IoT projects showed 

that 35% of respondents were either already selling or planning to sell data collected by their 

products and services (Preimesberger, 2018). 

In this context, public sector organisations in particular may fail to fully appreciate the 

value of the datasets they hold (for example, medical records), and sell them or share them 

with commercial partners or suppliers at a fraction of their true value (CDEI, 2020). 

Conversely, some organisations may be unwilling to explore data-sharing arrangements 

because of the complexity of data protection regulations and may miss out on valuable 

opportunities to collaborate with external parties. 

3.1.1.4 Data quality and hidden data bias 

Key determinants of data quality are accuracy, completeness and timeliness, as well 

as accessibility by machines (Vial et al., 2021). In addition, the data must be targeted to the 

use case, since this reduces the quantity of data required and improves the chances that the 

algorithm will learn to perform the required task accurately (Azulay, 2019). Poor-quality or 
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unsuitable data may compromise the ability of an algorithmic model to produce useful 

results. 

A more insidious problem is the existence of undesirable and undetected bias in data 

sets. For example, data sets used by face recognition algorithms have been found to be over-

representative of white male faces, causing poor performance on recognition of black and 

female faces, with worst performance on faces which were both black and female 

(Buolamwini & Gebru, 2018). In the context of employment, algorithmic models used to sift 

CVs and select possible applicants for short-listing can suffer from a similar problem – if 

models are trained only on historical data about who has been hired in the past, this can 

unwittingly entrench existing bias towards employing men and white people, and undermine 

attempts to improve the gender balance and ethnic diversity of new hires (O'Neill & Mann, 

2016). Therefore, training data for these algorithms need to be adjusted to be more diverse 

and representative of the wider population. 

However, where algorithms are operating on data drawn directly from the Internet, it 

may be much more difficult to find and correct the sources of bias in the data. One research 

group attempted to show an Internet advertisement for STEM careers to men and women in 

equal numbers but found that the ad was still shown to more men than women, for reasons 

which were initially unclear (Lambrecht & Tucker, 2019). Eventually the authors discovered 

that Internet advertising to women is more expensive because they tend to be more 

responsive, and that the ad-serving algorithm was optimising for cost. Data bias is thus a 

difficult problem to detect and solve; but organisations must address it, both for ethical 

reasons, and because otherwise they face reputational risk as well as the risk of failing in their 

legal obligations to avoid unfair discrimination. (Bias is discussed further in the Case 

Example for this section, and in the Design and Implementation sections below.) 

3.1.1.5 Data integrity 

Data integrity covers system control and access (who can access the data, for which 

purposes, and how is access tracked and logged), data protection, controls and regulatory 

compliance (focusing on defining the data and restricting the ability to delete or modify it), 

and audit trails, metadata and review (focusing on completeness and appropriateness of audit 

trails and required reviews of data and metadata). 

In highly regulated industries like pharmaceuticals, the need for data integrity is well-

established, but in practice even in this environment, companies sometimes struggle to ensure 
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data integrity requirements are met – Lippke et al. (2020: 51) report that from 2014 to 2016, 

inspections of pharmaceutical facilities revealed “a pattern of repeated failures to follow data 

integrity requirements”. As a result, data integrity has become an area of increased regulatory 

focus across the pharmaceutical industry. And as other industries and public services become 

more data-focused and deal with larger quantities of data, data integrity is becoming a more 

widespread concern. 

3.1.1.6 Data breaches 

As the volume of data which organisations are gathering has mushroomed, so too 

have the burdens of managing it responsibly. Breaches of organisation’s databases are very 

serious events, which can affect millions of individual customers or employees, attract 

significant fines from regulators, and damage a company’s reputation and share price – for 

example, consumer credit agencies Experian and Equifax have both suffered major breaches 

in the past decade, and British Airways was fined £183 million by the regulator in 2019 for a 

breach of their customer database (Gressin, 2017; Hackett, 2015; Sweney, 2019). However, 

many organisations, particularly those with low digital/data maturity, are retaining personal 

data which they do not need, placing their customers’ and employees’ data at unnecessary 

risk (CDEI, 2020). 

3.1.1.7 Limitations of regulation 

While GDPR is helpful in providing guidelines, it also poses significant challenges 

for organisations of all types and may at times hamper innovative and socially valuable 

projects. The costs associated with compliance with GDPR are large – one survey is reported 

to have estimated that the minimum cost of compliance for anyone doing business with any 

EU resident is $1 million just for changes to IT systems (Downes, 2018). Organisations 

which analyse customer data may be prevented by GDPR from outsourcing analysis 

functions or sharing data for research purposes or may find the costs of compliance for these 

activities too high to be worthwhile, and this may impose unnecessary limits on what they 

can learn from the data.  

Another concern is that like all regulations, the GDPR rules are static until they are 

revised; but they were drafted in a rapidly changing technological context, which may already 

be unable to cover the ways that data is being shared with Internet of Things (IoT) devices 

(Sullivan, 2018). There is thus a risk that new data-related activities may either be 
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unintentionally left unregulated or alternatively, may be unnecessarily banned or restricted by 

regulations intended for a different purpose. 

3.1.1.8 Trust and reputational risks 

Despite GDPR, there are still risks around loss of personal privacy and autonomy, as 

organisations gather ever more detailed and holistic data on their employees, service users 

and customers, and use the information to shape their behaviour. While in the short-term, 

closer organisational control over employees and greater influence over customers is likely to 

boost profits, over time it can also erode trust, and may bring the organisation into suppressed 

or open conflict with its employees (Kellogg et al., 2020). Employee mental health and 

experience of work suffers from reduced autonomy and increased monitoring (Brione, 2017; 

Hannif, Cox, & Almeida, 2014), and organisations lose many of the benefits of employee 

initiative, goodwill and collaboration (Gray & Suri, 2019). The risk of losing customer and 

service user trust through data collection and analysis is perhaps more subtle, but nonetheless 

can cause companies significant damage, as both US retail chain Target and Facebook can 

testify (Cadwalladr & Graham-Harrison, 2018; Duhigg, 2012; OxfordAnalytica, 2018) 

3.1.1.9 Systemic and market risks from data monopolies 

The Cambridge Analytica/Facebook scandal in 2018 demonstrated both the value and 

scale of personal data held by Facebook and the risks arising from this dataset to individuals 

and society (Cadwalladr & Graham-Harrison, 2018). Arguably, Cambridge Analytica’s abuse 

of so many users’ Facebook data was only possible because Facebook is effectively a 

worldwide monopoly. The CDEI report notes that “…platforms have created and aggregated 

huge datasets that can be used to generate increasingly sophisticated inferences and insights 

about people. These datasets have enormous potential value beyond the contexts they are 

collected in… although the concentration of data within a small number of organisations 

creates system and market risks.” (CDEI, 2020: 85). A similar problem exists in financial 

services: both the CDEI report (2020) and the Financial Stability Board report (2017) 

highlight the possibility of increased systemic risk in the financial sector because of large, 

varied and high-quality data sets being concentrated in the hands of a small number of 

companies. 

3.1.1.10 Failure to realise return on investment 

There is a risk that organisations devote increasing resources to big data analytics but 

fail to develop and sustain a competitive advantage from their investment. As Grover and 
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colleagues point out, a 2016 Gartner survey revealed that as big data investments continue to 

rise, results can be disappointing, with many firms struggling to achieve insights that made a 

real difference (Grover, Chiang, Liang, & Zhang, 2018; Heudecker & Hare, 2016). One of 

the reasons for this may be low data quality. Where organisations are dealing with incomplete 

or low accuracy data, or very broad and varied data which is inappropriate for their specific 

use cases, analysing even large volumes may fail to deliver business value (Azulay, 2019; 

CDEI, 2020). Data accessibility at scale can also be a challenging problem, as noted above 

(Vial et al., 2021). Finally, organisations may be struggling to recruit data scientists and other 

professionals with the skills to exploit the data they have at their disposal (Bayer, Sandy, 

Schrader, & Spiegl, 2021). 

3.1.2 Case example 

Racial discrimination is an unintended but frequent component of algorithmic model 

outputs based on Internet data. A study by Latanya Sweeney showed that online searches for 

names associated with Black people were more likely to bring up ads for public record 

checks than searches for names associated with White people. In cases where public record 

check ads did appear, they were much more likely to suggest that a person with a typically 

Black name had been arrested or had a criminal record than when they appeared for typically 

White names, regardless of whether the person concerned actually had such a record 

(Sweeney, 2013). This shows just one way that data bias embedded in the Internet can 

routinely disadvantage those from marginalised communities, by reinforcing negative 

stereotypes and unfairly arousing suspicion against individuals with certain backgrounds 

whenever anyone else is interested in finding out about them – whether in the context of a job 

search, dating, volunteering, media interest, or any other circumstances which arise.  

While these outcomes have not been consciously planned by algorithm creators, they 

reflect both the historical data on which they are trained, which is shaped by societal biases, 

and the blind spots and unconscious prejudices of algorithm developers. Unfortunately, if an 

ML algorithm learns from biased data, it acquires the same biases in its predictions, decisions 

and recommendations. These biased model outputs then reinforce the same societal biases 

which caused the data bias  – partly because people see the patterns they expect to see, and 

partly because people often take an algorithmic model’s output on trust as being neutral and 

objective (J. R. Jackson, 2018). 
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There is little that can be done directly to eliminate societal biases in Internet data, but 

organisations need to be aware that these biases are likely to affect the outputs of, for 

example, ad-serving algorithms on the Internet; and to find ways to avoid or at least detect 

and counteract such bias. The bottom line, as Sweeney points out, is that if an employer 

disqualifies a job applicant solely on information indicating an arrest record, the company 

could face legal consequences under anti-discrimination laws. 

3.2 Stage 2: Design 

All organisations pursue their goals in a changing context, both internally and 

externally, which they must review for opportunities and threats, and update their offering to 

their service users, clients or customers accordingly – and with the ever-faster pace of change 

in technology and society, this process of horizon scanning, internal review and updating is 

now continuous in many industries (Agarwal et al., 2020; Tarafdar, Tu, Ragu-Nathan, & 

Ragu-Nathan, 2011). This results in the continuous creation of new decision models, either 

for new products and services, as is typical in financial services, where new loan terms, 

insurance policies or customer account terms are constantly being offered, or for operational 

processes within the organisation such as stock control, purchasing or forecasting of seasonal 

demand fluctuations.  

 

Figure 3. Design considerations 

3.2.1 Design risks 

While the term model risk management is rarely used outside financial services, an 

increasing number of industries and sectors are reliant on models, and there are a range of 
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associated model risks which can cause serious problems unless they are identified and 

avoided or mitigated at the design stage. 

3.2.1.1 Safety and security 

Safety and security are critical aspects of models and must be assessed in relation to 

all relevant stakeholders, including anyone working directly with the model, any client, 

customer or service user affected by the model’s decisions, the organisation itself, and in 

some cases, the public. For regulated industries, consideration of safety and security issues is 

likely to start with compliance with the regulations (NAO, 2017; Stanley & Wdowin, 2018) – 

but must extend beyond compliance to be effective (Kaplan & Mikes, 2012a). Model safety 

issues are most likely to arise at the compliance level and it is important to ensure that these 

risks are addressed on a model-by-model basis (Kosoff, 2016). At the same time, 

interdependencies between models also need to be recognised and addressed at the model 

portfolio level, and in the wider context of enterprise risk management (Bridgers et al., 2020; 

Shi et al., 2016). 

Networked technologies offer huge potential but can also create new cyber-security 

vulnerabilities. Proposed models therefore need to be assessed on whether their 

implementation might offer new opportunities to hackers to steal data or to hijack or damage 

the organisation’s facilities (Brands, 2020; CDEI, 2020; Dzinkowski, 2019; McCollum, 2020; 

WEF, 2020). 

3.2.1.2 Accuracy 

Models offer significant potential for improving accuracy of predictions and 

judgements relative to traditional decision-making processes or systems, especially when 

they include ML algorithms. McKinsey highlights improved resource-allocation decisions 

and greater efficiency as typical benefits from using ML (Dharasathy, Jain, & Khan, 2020). 

However, the authors argue that measuring model accuracy is not necessarily 

straightforward, since for any moderately complex model there are typically many possible 

measures, as well as probabilistic outcomes. Therefore, they recommend identifying typical 

use cases and consulting with users, to select two or three measures which matter most for 

those use cases. The same article points out that where an automated model is being 

introduced to replace a previous system, whether automated or based on human judgements 

or scoring systems, it is important to establish the baseline accuracy of the current system, 

against which the performance of the proposed new model can be compared. 
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Accuracy may also need to be traded off against other requirements like fairness and 

explainability. In a specific context, the model which is most accurate overall may be less 

equitable in its outcomes for some sub-groups (Chowdhury, 2018). The need to generate 

useful explanations for various purposes may also affect the accuracy of models (Doshi-

Velez & Kortz, 2017). In all cases, an adequate level of accuracy must be determined in 

relation to the context and the other priorities for the model. 

3.2.1.3 Fairness 

Models which are based on ML algorithms often run into difficulties with undesirable 

emergent bias. However, even deterministic and relatively transparent algorithms can 

produce damagingly biased model outputs if fairness requirements have been poorly 

specified, or the algorithm has not been adequately tested - as happened with UK exam 

regulator Ofqual in the summer of 2020 when they attempted to allocate A level grades to a 

cohort of students who had been unable to take their exams because of the coronavirus 

pandemic (see case example below).   

There are several possible approaches to defining and enforcing fairness for 

algorithmic models, some of which have drawbacks and all of which require careful 

application in context. Dharasathy et al (2020) identify and discusses three options: 

1. Wilful blindness to sensitive category data such as sex, race or other 

socio-economic factors. Creating a model which is merely unaware of factors related 

to disadvantage and discrimination can still lead to unfair outcomes, including the 

emergence of proxies for protected characteristics, or can cause issues with the 

sample data used to train the model itself. 

2. Demographic or statistical parity in the outcomes of the model – for 

example, in a credit-scoring model, by ensuring that an equal proportion of loan 

applicants are successful from groups with and without protected characteristics. It is 

most likely to be effective in situations where only a single measure of fairness is 

being monitored, such as ensuring that the same proportion of loan approvals go to 

men and women respectively. 

3. Predictive equality is an attempt to ensure that the model performs 

equally accurately across different groups, i.e., that the error rates for each sub-group 

are the same, even though the outcomes for each sub-group may be different because 

of other factors. In the credit-scoring example, the same proportion men’s and women’s 
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loan applications may not be accepted, but the percentage of approved applicants who 

end up defaulting (the false positive rate) would be the same for each group.  

Given the nuances and trade-offs involved in defining fairness for a given context, it is 

also especially important that the teams tasked with developing algorithmic models are 

themselves diverse (Carini, 2019; Nunn, 2018; Snow, 2018). As we noted above, ML 

algorithms frequently operate on data sourced directly from the Internet which contains 

structural biases; understanding and solving the resulting problems is complex (Chowdhury, 

2018; Guynn, 2019; Lambrecht & Tucker, 2019). Diverse development teams are perhaps more 

likely to spot the potential for biased outcomes, and more motivated to find solutions, since 

they are more likely to be adversely affected personally. 

3.2.1.4 Explainability 

The advent of machine learning (ML) algorithms as a ubiquitous business tool means 

that we are for the first time in an era when machines can autonomously adjust their goal-

directed behaviour in the light of their own experience. This self-learning by machines in no 

sense replaces human reflective and adjustment activity (most notably in the choice of 

training data), nor does it directly replace human control over machines. However, it creates 

new challenges for the oversight of algorithmic models, especially around explainability.  

Unlike deterministic algorithms, for which the programmer specifies every calculation 

directly, ML algorithms are usually “black boxes”, i.e., because of the way they store 

information distributed across many layers of nodes, no information is available about what 

makes them arrive at their predictions. All that is available to the users of the model is 

information about the inputs and the outputs (Doshi-Velez & Kortz, 2017; Marcus, 2018a; 

Samek, Wiegand, & Muller, 2017). As ML applications are more widely adopted by 

businesses and governments for critical real-world applications, understanding what they are 

doing and why will increasingly become a top priority. Samek, Wiegand et al. (2017) identify 

four major reasons why transparent ML algorithms are important: 

• Verification of the system – to establish that an application’s 

prediction accuracy is not an artefact of reliance on causally unrelated but 

coincidentally correlated data. This is essential for healthcare and other safety-critical 

applications. 
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• Compliance with legislation – Courts require explanations of events 

and actions to reach fair judgements, so future AI systems will need to become more 

explainable. 

• Improvement of the system – If we can interrogate a system, we can 

discover weaknesses in its processes or biases in its model or dataset. We can also 

compare different models and architectures which may achieve similar accuracy by 

relying on analysis of different data features. 

• Learning from the system – If ML algorithms discover better ways to 

do things, it would be useful to understand their reasoning or analysis process. In the 

sciences, AI systems may acquire new insights about natural laws and processes, 

which human scientists would benefit from understanding. 

Explanatory transparency is certainly not required (or possible) for every aspect of a 

model’s functioning – but it must cover situations where the operator needs a background 

understanding of how it works, or real-time information about what the system is currently 

doing, as well as situations where post-hoc explanations are required, either as part of a regular 

audit of how a model has been behaving, or after something has gone wrong. Different types 

of inquiry and explanation will be relevant to different applications and audiences and for 

different purposes (Anderson et al., 2003; Doshi-Velez & Kortz, 2017; Rai, 2020; Ribeiro, 

Singh, & Guestrin, 2016). However, there are some common features which useful 

explanations share. Doshi-Velez and Kortz (2017) suggest that a useful explanation should be 

able to answer at least one of these three questions: 

• What were the main factors in a decision? 

• Would changing a certain factor have changed the decision? 

• Why did two similar-looking cases get different decisions or vice versa? 

Because of the inherent opacity of many ML models, Doshi-Velez and Kortz 

recommend that separate “explanation engines” be designed to unpack and present their logic 

for human audiences. Designing algorithms which meet these varied requirements for 

explanation presents some significant technical challenges, which are starting to be addressed 

by the machine learning community (Doshi-Velez & Kortz, 2017; Rai, 2020; Ribeiro et al., 

2016; Samek et al., 2017). Doshi-Velez and Kortz (2017) and Ribeiro et al. (2016) both 

discuss the problem of making explanations interpretable to humans, i.e.  that they provide 

qualitative understanding of the pathway between the input variables and the response.  
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There are trade-offs to be made when designing explanation systems. Doshi-Velez and 

Kortz (2017) and Rai (2020) both mention balancing the need for ML applications to be 

accurate against the need for them to be explicable: generating explanations has a cost in terms 

of time and resources, and decisions will need to be made about when explanations are 

necessary, and when they would slow down systems or degrade their accuracy to too great an 

extent to be valuable. Ribeiro et al. (2016) discuss the more subtle issue of trading off the 

accuracy of each explanation against its interpretability – since more accurate explanations are 

likely to be less readily interpreted. In both cases, the trade-offs would need to be decided based 

on the context of use and the needs of the users. 

Explanation algorithms are increasingly necessary and will play an essential role in 

making ML applications more transparent, both to manage what should be preventable risks 

(like being unable to explain an ML application’s behaviour to a regulator or court) and to get 

the right balance of explainability, efficiency and accuracy from the application to meet 

business goals while minimising strategy risks. At the same time, expert human “explainers” 

will continue to have a critical role (Dharasathy et al., 2020; O'Neill & Mann, 2016; Wilson 

& Daugherty, 2018) . In practice, however, organisations themselves often lack transparency 

and may be either unable or unwilling to investigate or explain algorithmic decisions, with 

significant costs to themselves and their stakeholders – see the case example below.  

3.2.1.5 Usability 

Usability is an ongoing concern from the design stage through the implementation and 

performance stages, and under the Implementation heading below, we cover some practical 

examples of model usability problems arising at the implementation stage. However, users 

need to be centred in the design process from the start to avoid “baking in” clashes between 

assumptions in the model design and emerging user needs at a later stage (Brione, 2017; 

Kochan, 2019; Tarafdar et al., 2011). If the new model is very similar to ones the users are 

already using all the time, the user consultation process can be routine, but nonetheless needs 

to be embedded in the organisation’s model development practice. If the new model 

represents a significant departure from previous practice, consultation needs to include all 

groups affected by the change, and could involve informal discussions, interviews, focus 

groups, surveys and questionnaires, as well investigation of background documents.   
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3.2.2 Case example 

The UK qualifications regulator Ofqual faced serious difficulties in the summer of 2020 

with the algorithm they used to calculate A level grades for a cohort of students who had not 

been able to take their examinations because of COVID19 (Hern, 2020; Mills, 2020). While 

Ofqual’s interim report (Ofqual, 2020) on their method for calculating 2020’s A level results 

indicates a strong concern for fairness, their focus was on eliminating biases caused by 

differences between schools and between teachers; surprisingly they did not consider their own 

algorithmic model (and decisions about when to use it) as a potential source of bias. 

The model was designed on the reasonable assumption that teacher-assessed grades 

would be somewhat inflated and aimed to find a fair way to bring grades into line with 

previous and future cohorts’ exam grades. To achieve this, teachers were asked to rank their 

students, and the ranks were then pegged to each school’s previous exam candidates’ grades. 

One outcome of this scheme was that excellent students in schools with historically low 

grades could not attain top marks. Teachers were also not allowed to rank students equally, 

resulting in some students of equivalent ability being awarded vastly different grades based 

on previous cohorts’ results. Small classes and small subjects (usually in independent 

schools) were exempted from the algorithm entirely, because of lack of representative data – 

meaning that these students benefitted from their teachers’ optimism about their performance, 

while other students were marked down by the algorithm. 

This model was of course developed under crisis conditions for an unprecedented 

situation, in a relatively short timeframe, so mistakes were perhaps inevitable. One basic 

error, noted by machine learning lecturer and blogger Tom Haines (Haines, 2020) occurred in 

testing the accuracy of the algorithm’s grade predictions: in 2020, teachers were asked to 

rank their students, but this was not something they had done in previous years, so there was 

no equivalent data for 2019 – so when the algorithm was tested for accuracy on the 2019 

results, the ranks used were the actual ranks of the students in the final exams, rather than 

their teacher estimated rank, effectively giving the algorithm part of the answer it was 

supposed to calculate. 

The problems with the A level results model could likely have been detected earlier if 

it had been subject to independent scrutiny before the A level results were announced, and 

Ofqual has been criticised for not accepting help which was offered at an early stage by the 

Royal Statistical Society (RSS) (Murray, 2020). Ofqual wanted the RSS experts to sign a non-
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disclosure agreement before involving them, which the RSS was unwilling to accept, because 

of its commitment to transparency, and so Ofqual did not take up the RSS offer. However, 

Ofqual’s reluctance to expose the details of its model to public scrutiny is understandable, and 

perhaps even justified, given the political sensitivity of the A level results and the personal 

consequences for thousands of families, as the unfolding of the crisis emphasised. Ultimately, 

the political storm caused by the fiasco led to the results model being abandoned and teacher-

assessed grades being used instead, an arrangement which continued in 2021. 

3.3 Stage 3: Implementation 

At the implementation stage, prototype models are thoroughly tested by data scientists 

and data engineers and then adjusted as necessary to create a proof of concept. This may be 

followed by a small-scale live roll-out, involving software engineers and IT staff as well as 

members of business functions. This again must be monitored and adjusted by software 

engineers in the light of real-world feedback to create a minimum viable product, which can 

then be put into production by IT and business staff. If data availability for a scaled-up 

process has not been addressed at an earlier stage, this may now rear its head as a serious 

problem (Vial et al., 2021). 

Task requirements such as a working definition of fairness and user needs, goals and 

beliefs should have been specified at the design stage. However, at the implementation stage, 

testing and user feedback is likely to reveal gaps and mismatches between the assumptions 

embedded in the model and the realities of the world. The implementation phase is therefore 

critical for spotting and resolving areas where the model does not work as well as expected. 
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Figure 4. Implementation considerations 

3.3.1 Implementation risks 

3.3.1.1 Data accessibility 

As noted above in the Data section, it is non-trivial to scale up a prototype algorithm 

which has been trained and tested on simulated data so that it can operate in a real-world 

context. Data scientists and data engineers creating the prototype therefore need to engage 

with IT and business staff at an early stage to address this issue, so that it does not become an 

obstacle to the project at the implementation stage (Vial et al., 2021). 

3.3.1.2 Stability 

The performance of all models (and indeed of traditional processes based on human 

decision-making or risk scoring) becomes less stable over time, primarily because each 

model is developed using data which was collected prior to its own existence. Introducing a 

model to process information and make decisions inevitably changes the world in which it 

operates. Over time, these changes systematically affect the data the model is designed to 

process and thus the decisions it makes. 
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Further, major changes in the world can affect the relevance of the historical data used 

to train models. The COVID19 pandemic, for instance, has radically altered historical 

patterns of consumption, travel, work and engagement with public services, rendering many 

pre-pandemic models obsolete. Equally, changes within the organisation such as new 

policies, or external regulatory or legal changes, can also affect model reliability. 

Therefore, all models need to be reviewed at regular intervals, as well as whenever 

events indicate that relevant data patterns are likely to have shifted significantly. To 

determine the frequency of regular reviews, McKinsey recommends back-testing models on 

old data at different historical distances from the present – for example, data from a year ago 

and from two years ago. If one-year-old data gives good results but two-year-old data does 

not, then the model needs to be reviewed and retrained roughly every 18 months (Dharasathy 

et al., 2020). 

3.3.1.3 Usability 

The literature we reviewed offers several examples of workplaces where, for a variety 

of reasons, models for decision support were not being used as management intended, or as 

employees had been instructed, with the result that neither the employees nor the models 

were working optimally (Bader & Kaiser, 2019; Lebovitz, Lifschitz-Assaf, & Levina, 2019; 

Russell, 2012). The models concerned all aimed to support human workers by processing 

input data about a patient or customer and producing a prediction about that patient or 

customer’s situation and needs. These workers were professionals with established expertise 

and a commitment to their role and professional goals, which they felt was undermined to 

some extent by models imposed by technology that they were expected to use at work. In 

other words, they saw the model as creating risk to the quality of their work, which they 

sought to avoid or mitigate.  

For example, in a US study, radiologists were provided with an ML tool which could 

analyse medical images to assess children’s bone growth and to detect lung cancer and breast 

cancer (Lebovitz et al., 2019). The radiologists were keen in principle to use ML to relieve 

them of the more routine and time-consuming parts of their job; but in practice, the 

judgements of the ML model frequently conflicted with the radiologists’ own judgements, 

which introduced doubt and ambiguity into the process, and forced radiologists to re-examine 

the images and question both the model’s judgements and their own. Critically, the 

radiologists had no background information on how the model was trained, which data it had 
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been trained on, or the specialism and number of years of experience of the radiologists who 

had provided the training assessments. They also did not know anything about the algorithms 

the model was using, and they had no means to enquire into the logic behind an assessment to 

get an explanation. As a result, although the radiologists used the model to provide a “second 

opinion”, this simply made the assessment process more time-consuming, but did not add any 

significant value to it, because in the absence of necessary background information on the AI 

tool, in most cases the radiologists (not unreasonably) had more confidence in their own 

professional judgement. 

In this study, as in the others cited, predictive models were introduced into an 

organisation with the goal of structuring people’s decisions at work in a way which would 

improve its quality and efficiency, with certain organisational priorities and values in mind. 

Unfortunately, in all cases, management wrongly assumed that having endowed the model 

with these priorities and values, the model would impose the same priorities and values 

directly onto employees’ work practices. As these studies show, employees are likely to 

resist, manipulate or avoid systems and models which interfere with their personal and 

professional priorities and values embedded in their existing work practices – especially if the 

new approach has not been properly explained, is inflexible and/or cannot be enquired into. 

To avoid this kind of outcome, Kochan (2019) and Tarafdar et al (2011) both stress 

that employers need to engage with employees early and establish honest two-way 

communication about the issues a proposed technology is designed to address and how it will 

integrate with employees’ current expertise and existing work practices. In all cases, the best 

results will be achieved when the mental models (Johnson-Laird, 1983) of the expected users 

of the system, and the ways these may differ from the proposed decision support model, are 

well-understood by those designing and deploying it.  

 At the same time, it is necessary to adjust the algorithmic model at the 

implementation phase to support human operators, and to be supported by them where 

appropriate (Daugherty & Wilson, 2018; Wilson & Daugherty, 2018). 

3.3.1.4 Maintaining skills, engagement and autonomy of human operators 

It is critical to understand and address human factors issues which emerge at 

implementation, to avoid deskilling and reducing the autonomy of human operators. Reduced 

autonomy and deskilling may make human jobs less satisfying, for instance as reported by 

Brione  (2017) in a case study of a Siemens factory, where factory workers lost the ability to 
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plan their work, because new automatic scheduling software instructed factory teams on the 

order to complete their workloads for maximum productivity. More seriously, once most of 

the work in a complex task is automated, the risk of human error may rise through inattention 

or inadequate preparedness for situations when the automatic system requests human 

intervention or simply fails. Airline pilots can find themselves in this position, occasionally 

with tragic consequences (see case example below). Again, the human contribution must be 

recognised, tested and adjusted as necessary, as part of the development of a proof-of-concept 

model. 

3.3.1.5 Automation is simple, organisational change is difficult 

Finally, automating a process which is currently integral to someone’s job is likely to 

be disruptive to them and to the organisation in which they work. This is not a reason to 

avoid automating, but it is a reason to think ahead about the impact of introducing an 

automated model on staff, on their jobs, workflows and work relationships, with a view to 

optimising the organisational and stakeholder benefits of the automated process. In other 

words, the risks of the proposed process itself (the model risk) may be minimal or easily 

controlled, but the wider enterprise risk could be significant and must not be overlooked. This 

type of risk is discussed more fully in the second part of the paper, looking at ERM. 

3.3.2 Case example 

In an example recently publicised in the media, Goldman Sachs faced legal 

investigation in the United States over the ML model it was using to determine credit limits 

for the Apple Card credit card. David Heinemeier Hanson, a high-profile tech entrepreneur, 

complained on Twitter that despite his wife’s higher credit score, he received a credit limit 

twenty times higher than hers. Customer service were courteous, but unable and unwilling to 

challenge the judgment of the model, to which they had no access. Apple co-founder Steve 

Wozniak joined the Twitter conversation to say that he and his wife had had a similar 

experience. Eventually Hanson’s wife’s credit limit was “bumped” to match his, but the 

algorithm remained unchanged. There was no suggestion that the model was designed to 

discriminate against women, but in practice it did, and there was no way of finding out why, 

or changing its conclusion (Fingas, 2019). 

This example points to some model risk management failures, and indeed enterprise 

risk management failures at Goldman Sachs, which go well beyond the regrettable fact that 

their credit limit model unintentionally discriminated against women. We do not know 



29 
 

whether the company had taken steps before deployment to check that their algorithm was 

not reproducing societal bias against women or other protected groups, but whatever testing 

was done failed to detect the model’s sexism, and perhaps other inappropriate biases. 

Secondly, customer service staff should have been trained to know that this kind of issue can 

emerge, and once the situation arose, they should have been able to escalate the issue to an 

expert ML team within the organisation. The expert team should then have been able to 

derive an explanation of the model’s behaviour. If the algorithm could not be corrected 

immediately, the organisation should have suspended its use and reverted to other trusted 

methods of credit checking until the problem could be solved. Instead, there was no process 

in place, and customer services had no resources to deal with a problem they did not 

understand. When the problem was eventually escalated, the company did not know how to 

fix it, or have a fallback position while they dealt with it. As a result, it was exposed to a 

justified Twitter rant by a very high-profile customer followed by negative media coverage 

and legal trouble. 

3.4 Stage 4: Performance 

Once a model has passed all necessary tests, checks and pilot stages, it can be put into 

production. At this stage, the model is operating in real time on real-world current data, and 

so there is actual rather than hypothetical operational risk if the model malfunctions or the 

real-world data diverges significantly from the training data. 
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Figure 5. Performance considerations 

3.4.1 Performance risks 

3.4.1.1 Human biases and perverse incentives 

Although more and smarter automation reduces human involvement in routine 

processes, humans are still involved in and ultimately responsible for oversight and risk 

management of automated models, at every level of the organisation. (See below under 

Managing aggregate model risk). While risks arising from human management are of course 

part of Enterprise Risk Management, discussed below, they also need to be considered as a 

component of model risk, including at board level. 

There is a large literature on the many human cognitive shortcuts, heuristics and 

biases which can reduce people’s effectiveness in fulfilling these responsibilities – for 

example, overconfidence about forecast accuracy (J. Liu, Zhou, Wan, & Liu, 2019), 

confirmation bias (Allahverdyan & Galstyan, 2014), anchoring estimates to readily available 

data (Stulz, 2009), the planning fallacy, i.e. “nothing will go wrong with this project” 
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(Kahneman, 2011), groupthink (Janis, 1972), normalisation of deviance (Vaughan, 1997) and 

organisational licensing (Pernell, Jung, & Dobbin, 2017).  

These issues all require attention in the design of human work and human interaction 

with automated systems and models. However, they are “means” problems; that is, people are 

honestly working towards a common end, but achieve it more slowly, more expensively, at a 

lower standard of accuracy or safety, or fail to achieve it altogether, because something goes 

wrong with their individual or collective thinking about how to do it.  

Even more serious, perhaps, is the Principal-Agent problem, which is an “ends” 

problem, indicating divergence between the interests and goals of the organisation (the 

principal) and those of the individuals or teams working for it (the agents) (Stanley & 

Wdowin, 2018). In the context of model risk management, it is therefore important that the 

personal incentives and penalties faced by everyone with responsibility for managing model 

risk closely reflect the incentives and penalties facing the organisation.  

3.4.1.2 Coordination between human oversight and automated process management 

Regular monitoring and review processes can sometimes repeatedly fail to capture 

serious ongoing anomalies in business processes. For example, the bank UBS suffered from a 

single trader’s fraud, which may have continued for years before it was detected, despite their 

best-practice financial risk management strategies and repeated positive outcomes from 

regular risk reports, internal audits and external reviews; this was apparently because risk 

managers did not sufficiently investigate automatically reported operational anomalies, or 

enforce existing risk controls  (Conforti et al., 2013). 

Airline pilots occasionally face analogous difficulties: problems with auto-pilot 

systems are fortunately extremely rare, but in consequence, when they do occur, pilots may 

not notice when automated processes fail or may misunderstand feedback from their 

instruments or otherwise fail to respond appropriately (Hart, 2017). (See case example 

below). Similar failures have occurred with experimental self-driving vehicles, where human 

drivers become complacent and fail to monitor the vehicle and the road adequately, and are 

not able to respond appropriately in time when something goes wrong (Marcus & Davis, 

2019; Smith, 2018). 

Evidently, it is not enough to have automated monitoring of live models and processes 

and routine human risk management procedures. Human risk management must be 

sufficiently engaged with automatic operational processes and alerts to monitor them 
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adequately, and this requires carefully designed human-machine interactions (Anderson et al., 

2003; Wilson & Daugherty, 2018).   

3.4.1.3 Setting and adjusting time intervals for model monitoring and review 

All automated decision processes and the data on which they operate need to be 

monitored by humans at appropriate time intervals to make sure they are still returning 

accurate results. In setting the level of human scrutiny required, there is a trade-off between 

the cost of monitoring the process and the cost of missing an error or anomaly. This trade-off 

should be relatively straightforward to calculate in situations in which the rate of change in 

the data being processed is reliably approximately constant. 

However, situations sometimes arise in which the rate of data change suddenly 

accelerates, as can happen in financial markets (Stulz, 2009). For these kinds of scenarios, it 

is critical firstly that the system has been designed to flag any sudden changes to human 

managers, and secondly that if they occur, the rate of monitoring can be rapidly adjusted 

upwards to match the current rate of change. 

3.4.2 Case example 

Automation in the airline industry began several decades ago. According to Christopher 

Hart, former Chairman of the US National Transportation Safety Board, “Automation in 

aviation began with a simple goal: assume that automation is good and automate whenever it 

is technologically feasible. Unfortunately, the ‘technologically feasible’ approach did not 

consider the human factors issues associated with the automation.” (Hart, 2017).  

Hart provides several examples of accidents where a combination of unexpected 

unavailability of automated information and systems and pilot inexperience and error led to 

tragic results. While aviation accidents are rare, and typically have complex causes, they often 

include variations on these themes: 

(1) When the automation is running smoothly, there is a tendency for pilots to become 

complacent and bored, and to pay insufficient attention to what is going on. When automation 

is temporarily unavailable, suddenly fails, or reports a problem, pilots may not notice (Hart, 

2017) . 

(2) When pilots do notice a problem with the automation, they may not be prepared to 

take control smoothly and competently due to lack of adequate training and recent relevant 

experience (Hart, 2017). 
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(3) When pilots have taken over manual control of a plane, they may misunderstand the 

feedback they are getting from their instruments and from the environment, again due to lack 

of adequate training and experience (Hart, 2017). 

(4) Sometimes when pilots attempt to take manual control of a malfunctioning aircraft, 

they are unable to do so, because the automated task model has been designed to override pilot 

input (Travis, 2019), on the assumption that the automated system is always more reliable than 

the human pilot. 

But if one is tempted to think that these problems might be resolved by removing human 

pilots altogether, Hart notes that the airline industry has been trying unsuccessfully to do this 

for decades. Further, he comments that “When automation encounters unanticipated 

circumstances, recovery usually depends entirely upon the pilots.... Situations involving 

automation with substantial human operator involvement have demonstrated two extremes. On 

the one hand, the human is the most unreliable part of the system. On the other hand, if the 

system encounters unanticipated circumstances, a highly-trained proficient human operator can 

save the day by being the most adaptive part of the system.” So, while it is important to design 

automated task models to compensate for the weaknesses of human pilots, it is also critical to 

recognise human strengths in this environment and design automation which takes full 

advantage of human abilities. 

3.5 Managing aggregate model risk  

In the previous sections we have covered some key types of model risk arising at each 

stage of our overarching model of algorithmic models and model risk: Data, Design, 

Implementation and Performance. The management of aggregate model risk is different, in that 

it attempts to take an overview of the activities and risks of each of the other stages.  

Aggregate model risk management consists in managing the risks associated with each 

individual model, and simultaneously in managing the aggregated risks arising from the 

organisation’s portfolio of models. These aggregated risks will be affected by the total number 

of models being managed, the proportion of these models which are connected to each other 

or correlated with each other and therefore not independent, the strength and variety of the 

interactions between them, and the possible presence of superordinate goals. 

Managing model risk is typically achieved in financial services through the Three Lines 

of Defence approach (Cohn, 2019; IIA, 2013), introduced in the early 2000s, and since updated, 

by the Institute of Internal Auditors (IIA). Line 1 consists in the model owners and developers, 



34 
 

who work in accordance with established procedures and checks in a model design, inspection 

and validation pipeline. Line 2 is the organisation’s risk function, whose role is to advise on, 

oversee, validate and check the work of Line 1 staff, again in line with established procedures. 

Line 3 is the organisation’s internal audit function, whose job is to oversee the work of both 

the Line 1 staff and the Line 2 staff, to ensure that model risk policies and procedures as they 

apply to both Lines 1 and 2 are fit for purpose and are being adhered to competently and in 

good faith, and to report any concerns upwards to the Board, and where necessary, to external 

regulators. 

The Three Lines of Defence model has evolved since its introduction, partly in 

recognition of the importance of recognising business opportunities as well as threats under the 

risk umbrella; and partly to address what was originally a rather rigid separation between the 

three Lines, often resulting in an unnecessarily confrontational relationship between them 

(Cohn, 2019). The updated version aims to allow closer cooperation between the three Lines 

without compromising the independence of Line 2 and Line 3. 

Figure 2 shows a somewhat simplified process for model development and approval at 

a typical financial institution. The main actors in this diagram are Line 1 staff, i.e., the people 

working in Line of Business (LOB) functions and the members of the Innovation Group who 

lead model development practice. Together they develop potential product development 

portfolios for prioritisation and evaluation, each of which the Innovation Group checks and 

decides whether it qualifies for development. The project scope and size are then determined, 

and a team assembled, which identifies acceptable models to achieve project objectives. The 

relevant LOB staff then choose a model to be developed and documented by the model 

development team. 

The next stage involves Line 2 staff, who develop challenger models and evaluate the 

proposed model against the performance of the challengers. If the model passes the Line 2 

evaluation, risk monitoring and control processes are then put in place and the model goes 

“live” into the business. Once it is active, it will continue to be monitored and will be 

recalibrated periodically as necessary or retired and replaced at some point with a better model. 
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Figure 6. A simplified model development and approval pipeline typical of a financial 

institution 

The entire model development process, from start through challenge and approval to 

production, re-calibration and retirement, is audited by the firm’s internal audit function (Line 

3). As we argued in the Design section, this type of model risk management process could 

usefully be adapted for a variety of industries and organisations outside financial services. 

In addition to this process for developing and approving individual models, there also 

needs to be a process for assessing and managing the risk arising from the entire model 

portfolio. In banks, models are typically assigned to a risk tier, with higher risk models 

subjected to greater scrutiny at the review stage, both internally and by the regulator (Shi et al., 

2016). This raises the question of whether, if the bank has a collection of similar, small models, 

these should each be treated separately as lower-tier models (tier 2 and 3) or whether they 

should be grouped together and treated as one larger tier 1 model. According to Shi, Young et 

al., this decision is often a matter of regulator preference, but it has serious consequences, since 

tier 1 models are typically much more heavily scrutinised than lower-tiered models. In addition, 

they point out that models are often interdependent, because some models’ outputs are used as 

inputs for other models, and because models which share key inputs will produce correlated 

results. To deal with this, it is possible to trace direct output-input relationships between 

models, and to estimate the degree of correlation between models with shared inputs, to 

calculate approximately the risk arising from the whole network of models in addition to the 

individual model risk. Like the process for revalidating individual models, this process needs 

to be repeated at regular intervals to take account of changes in the model portfolio. It is 

therefore important that responsibility for these calculations and decisions is allocated between 
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Lines 2 and 3, and that there is a clear route for escalation of concerns as far as Board level 

when required. 

The financial services industry has so far found ways to deal with unpredicted errors 

and unusual emergent behaviour of ML algorithmic models through a combination of alert 

systems to warn employees if unusual patterns are detected, automatic suspensions of activity 

if certain thresholds are breached, “kill switches” to enable employees to stop ML behaviour 

which looks worrying or dangerous, and “humans in the loop”, who are required to approve 

proposed ML model actions before they go ahead. These kinds of mechanisms are integrated 

into each institution’s model risk management practice, backed up by good information 

governance practices and the work of the risk management function within the Three Lines of 

Defence framework (Cohn, 2019; IIA, 2013), and the oversight of the relevant regulators 

(BankofEngland, 2019; FSB, 2017).  

SR 11-7 recommends that boards and their committees adopt a structured approach to 

oversight of model risk within the broader risk management framework of the organisation. 

The board’s goal is to reduce model risk to a level consistent with the institution’s overall risk 

appetite, and they are led in this by management’s approach to identifying, managing and 

mitigating model risk. The board’s role is to challenge assumptions made by management, 

critically assess results and mandate changes where necessary; this can be difficult given the 

very large numbers of models in use, their complexity and the range of different types of output, 

and the fact that board members are not necessarily modellers themselves (Yoost, 2013). We 

place these challenges in their broader organisational context in the following section. 

4. Technology and Enterprise Risk Management 

Algorithmic models carry broader and long-term implications for an organisation, 

including: 

• Reputation risks: The use of algorithmic models can significantly 

increase an organisation’s exposure to reputation risks. This is particularly true if the 

various stakeholders believe that the workings of the model are not aligned to the 

ethics and values of the organisation, or if the models are designed to covertly 

manipulate consumers, regulators, or employees. 

• Financial risks: Errors or vulnerabilities in models, especially those 

used for financial and strategic decision making, can result in significant revenue loss 

for organizations and negatively impact the integrity of their financial reporting. 
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• Operational risks: As models are used to automate supply chain and 

other operational areas, errors can result in significant operational disruptions. 

• Regulatory risks: Algorithmic models that make decisions in violation 

of the law, circumvent existing rules and regulations, or discriminate against certain 

groups of people can expose organisations to regulatory and legal actions. 

• Engineering and cyber-security risks: The wide-scale use of advanced 

algorithmic models can create new points of vulnerability for IT infrastructure. 

• Strategic risks: With algorithmic models being used increasingly as 

sources for strategic decision making, errors or vulnerabilities within them can put an 

organization at a competitive disadvantage. 

To handle these risks, organisations use Enterprise Risk Management. ERM is a 

coordinated set of activities to direct and control an organisation in relation to risk (RIMS, 

2011). ERM is a strategic business discipline that supports the achievement of an 

organisation's objectives by addressing the full spectrum of its risks and managing the 

combined impact of those risks as an interrelated risk portfolio. Beyond model risk 

management, we have identified four main complementary approaches to enterprise risk 

management of a digital organisation: organisational culture; governance and regulation; 

organisational simulation; and investigation and testing. 

The literature on organisational culture and risk stresses the importance of a culture in 

which risk is seen as the responsibility of all members (Agarwal et al., 2020; Kaplan & Mikes, 

2012a). Hardy and colleagues (Hardy et al., 2020) highlight the literature on safety cultures, 

which assumes that a culture can be engineered to reduce accidents and contain risks and 

identifies features of a safety culture, such as low thresholds for reporting incidents, extensive 

communication about the importance of safety, training and protections for whistle-blowers 

(Flin, Mearns, O'Connor, & Bryden, 2000; Reason, 1997, 1998, 2000; Silbey, 2009). However, 

they also point out that this approach has been criticised for lack of conceptual rigour and 

failure to demonstrate causal relationships between safety culture and safety performance. 

In the organisational literature more broadly, books and articles aimed at practitioners 

offer various recommendations for setting cultural expectations, including: the importance of 

a mission statement, regularly reviewed and clearly communicated, including the 

organisation’s core values, encompassing the perspectives of all stakeholders (Schwartz, 

Hagel, Wooll, & Monahan, 2019); the need to communicate clear ethical boundaries for 
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acceptable behaviour throughout the organisation (Simons, 1999); the need to ensure that 

business leaders’ and employees’ personal incentives are fully aligned with the interests of the 

organisation in relation to any risks to which they may expose the organisation (Pernell et al., 

2017; Stanley & Wdowin, 2018; Stulz, 2009); the need to recognise, understand and value the 

contribution of their workforce, including casual workers, contractors, remote workers, 

overseas divisions and outsourced parts of the operation (Gray & Suri, 2019); and the 

importance of promoting workforce diversity actively in all functions and at every level of the 

organisation (Nunn, 2018). 

There is empirical evidence to support some of these prescriptions: for example, the 

work of Pernell and colleagues on the relationship between CEO incentives and financial 

institutions’ performance in the financial crisis (Pernell et al., 2017), and ethnographic work 

looking at the roles of remote and casual workers in digital organisations (Gray & Suri, 2019; 

Shestakofsky, 2017). And while there is as yet little work examining the business outcomes of 

high employee ethnic diversity, there is certainly evidence of the damage resulting from lack 

of diversity (Buolamwini & Gebru, 2018). 

In the area of governance and regulation, the literature again offers a mixture of advice 

for practitioners and empirical studies of organisations. At the prescriptive end, organisations 

are recommended to: have clear procedures and governance structures to ensure compliance 

with relevant regulations, including for model risk and for other types of technology risk nested 

within enterprise risk (Cohn, 2019; IIA, 2013; Kaplan & Mikes, 2012a; Kosoff, 2016); to 

develop a constructive and honest relationship with relevant regulators, enabling full disclosure 

of relevant information and cooperation in the public interest (NAO, 2017; Stanley & Wdowin, 

2018); and to promote understanding of and honest communication about management of all 

types of risk (preventable, strategic, external, systemic) throughout the organisation, including 

at board level (Agarwal et al., 2020; De Smet, Lund, Weiss, & Nimocks, 2021; Kaplan & 

Mikes, 2012a; Yoost, 2013). The empirical literature mainly highlights organisations in which, 

because of poor governance and/or lack of appropriate regulation, the rights, needs and 

concerns of individual customers or service users have been compromised (Dieterich et al., 

2016; Foxglove, 2020; Haines, 2020; Hern, 2020; Larson et al., 2016; Martin, 2019; Molnar & 

Gill, 2018), with several of these authors calling for improvement. 

A third approach to managing risk can be summarised as organisational simulation. 

Simulation covers a very wide range of methods and techniques for modelling real or 
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hypothetical situations and trying out alternative scenarios. Much of our discussion has been 

concerned with the models which organisations use to pursue their activities, and any such 

model is a simulation. By organisational simulation, we refer specifically to attempts to model 

the organisation itself, or a substantial subset of its operations, with the goal of improving the 

organisation’s self-understanding and the quality and relevance of interventions to bring about 

organisational change. One influential and longstanding method for organisational simulation, 

championed by John Sterman and evidenced by many case studies, is System Dynamics, which 

encourages and enables teams to apply understanding from the behaviour of physical systems 

(such as stocks and flows and feedback loops) to model the behaviour of their own organisation 

(Sterman, 2000, 2002, 2018; Sterman, Oliva, Linderman, & Bendoly, 2015). Another 

simulation tradition covers the closely related practices of scenario planning and war-gaming, 

which are more qualitative approaches for which it is difficult to measure results, but which 

nonetheless have sustained their popularity with practitioners over a long period (Augier, Dew, 

Knudsen, & Stieglitz, 2018). All these methods could be seen as a response to the insight that 

organisations are open systems, deeply interconnected with the world around them, including 

the behaviour of suppliers, customers and competitors, relevant technological developments, 

social and political trends and pending regulatory change (Rousseau, 1979), and that therefore 

organisations need to understand and monitor these relationships continuously to survive and 

thrive. 

Finally, the literature highlights the important role of investigation and testing in any 

risk management or risk organising regime. Hardy and colleagues (Hardy et al., 2020) identify 

three modes of risk organising: prospective, i.e., during the design and planning phase of an 

operation; real-time, i.e., while an operation is in progress; and retrospective, i.e., after a risk 

has been realised and an incident has occurred. Investigation and testing are important in all 

three modes: initially, to establish the safety and suitability of the proposed operation, perhaps 

partly using prototypes and simulations; then during operation to ensure the operation is 

proceeding as planned, and is robust to possible changes in the environment, with the testing 

regime itself kept under continuous review through governance processes and structures 

(Kaplan & Mikes, 2012a; Sterman, 2000). Finally, when critical incidents do occur, practitioner 

articles stress the need to review losses, failures and mistakes in a timely, consistent and 

effective fashion, as mandated by appropriate governance processes (Agarwal et al., 2020; 

Kaplan & Mikes, 2012a; Kosoff, 2016). In practice, the empirical literature suggests that at 

least in the case of large formal proceedings such as public inquiries, retrospective 
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investigations are often hampered in their quest for understanding and future incident 

prevention by a focus on who is to blame, which makes employees less willing to report 

mistakes (McArdle, Burns, & Ireland, 2003; Waring, 2005) and encourages managers to limit 

the scope of investigations (Elliott & McGuinness, 2002; Hutter, 1992) – emphasising that 

while investigations and tests are important, they rely for their effectiveness on the culture in 

which they are embedded. 

For ERM to be effective therefore, an organisation should have an organisation-wide 

approach to manage technical and cultural risks: This approach should include principles, 

policies, and standards; roles and responsibilities; control processes and procedures; and 

appropriate personnel selection and training. It also should provide transparency and 

processes to handle enquiries, which can help organisations use algorithmic models 

responsibly. There should be clear processes and approaches for the development, 

deployment and use of algorithmic models; and the processes and approaches should be 

aligned with the governance structure to address the model life cycle, including data 

selection, algorithm design, integration and implementation and live use in production. 

Further, processes for assessing and overseeing algorithmic data inputs, workings and outputs 

should be established, leveraging state-of-the-art tools as they become available. Internal and 

external parties can provide objective reviews of algorithms and related issues (Deloitte, 

2020). 

4.1 Enterprise risk and wider regulation 

Regulation covers a huge range of different types of activity – for a useful summary see 

the National Audit Office’s recent overview (NAO, 2017). The regulatory goals mentioned by 

the NAO largely fall into two broad categories. Firstly, there is a need to protect the public 

from a wide variety of harms, which Stanley and Wdowin (2018) summarise as: those arising 

from information asymmetries between companies and customers; the protection of specific 

vulnerable customer groups such as children, the elderly, the poor, the disabled; and protecting 

all customers from unethical and exploitative behaviour by companies. Secondly, regulators 

are tasked with making sure that social systems such as markets, industries and public services 

work efficiently and fairly in the public interest, largely through improving the competitiveness 

of markets or controlling prices where competition is impossible. 

A third focus of regulatory concern (already mentioned above) is systemic risk, i.e., the 

risk that failure of a single node in a network, for instance a financial institution, could cause 
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the collapse of an entire system, market or industry. Systemic risk has become a central concern 

for the financial services industry and its regulators since the global financial crisis of 2008 

(Arner et al., 2019; FSB, 2017; Holopainen & Sarlin, 2017; Kou, Chao, Peng, Alsaadi, & 

Herrera-Viedma, 2019), and is now being recognised and studied in other domains as well 

(Goldin & Mariathasan, 2014; Renn, Lucas, Haas, & Jaeger, 2019). Therefore, in addition to 

oiling and rebalancing the wheels of the economy and protecting individuals from hazards and 

violations of their rights, regulators need to consider sources of risk which could lead to 

systemic crisis or collapse. This is of course more difficult when they are tackling globally 

interconnected, non-linear risks requiring multilateral cooperation between governments. 

In principle, regulators try to take a “God’s-eye view” of an industry or market and then 

intervene from the outside to adjust the way it operates. However, regulators are human and 

like everyone else, subject to the typical range of human cognitive biases and errors, on which 

there is a substantial literature in psychology and organisational behaviour (Goswami & 

Pandey, 2019; L. A. Jackson, Sullivan, & Hodge, 1993; Janis, 1972; Jones, Davis, & 

Berkowitz, 1965; Kahneman, 2011; Lee, Hallahan, & Herzog, 1996; Pinto, 2014; Vaughan, 

1997). Furthermore, they become part of the system they are regulating, because of the 

necessary relationships between themselves and the industry, both corporately and 

individually. This means there is considerable potential for what Sterman (2002) calls “policy 

resistance”, i.e. interventions having unrecognised feedback effects which in the longer-term 

are counterproductive – for instance, we summarised above the work of Pernell, Jung et al. 

(2017), showing how the US Sarbanes-Oxley Act, aimed at reducing the risk carried by banks, 

led to the appointment of Chief Risk Officers in financial institutions, which paradoxically led 

to those institutions taking on more risk.  

Stanley and Wdowin (2018) note that, even in the best case, regulators depend on the 

expertise and cooperation of those in the industries they regulate, which inevitably limits their 

ability to act independently; in addition, those working for regulators have often previously 

worked in the industry they regulate, and may expect to do so in the future, which further 

reduces their independence and willingness to criticise or penalise industry (a form of 

Principal-Agent problem); they also point out that regulators tend to be underfunded, limiting 

the resources available for regulatory activity and the salaries offered compared to those 

available in the industry, which reduces the regulators’ effectiveness and increases their 

reliance on industry cooperation and goodwill – a point echoed by the Centre for Data Ethics 

and Innovation in the specific context of AI (CDEI, 2020). These problems together can add 
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up to “regulatory capture” in which the regulator is too weak to restrain risky industry 

behaviour, and instead becomes the industry’s advocate and servant. 

There is also a structural problem, in that any given regulatory regime is static, and 

designed to manage industry behaviour under certain assumptions, which may not hold true for 

very long, necessitating continuous revision and updating of regulations. For example, as 

mentioned above, GDPR is already failing to cover IoT devices adequately (Sullivan, 2018). 

In recent years, there have been some attempts to use algorithms in an explicitly 

regulatory role, an approach which has some obvious advantages. Firstly, algorithms can 

respond to actual behaviour as it happens, to monitor and punish abuses much more 

comprehensively and systematically than a rule book backed up only with human resources 

would normally allow. Stanley and Wdowin (2018) give the example of traffic speed cameras 

with number plate and face recognition capabilities, which can be deployed much more broadly 

and effectively than occasional police speed traps. Secondly, in the case of social media 

moderation, algorithms relieve humans of the trauma of viewing very violent or pornographic 

content in the course of their work. On the other hand, serious problems have emerged with 

algorithmic moderation of social media: current algorithmic models are incapable of 

distinguishing between abuse and legitimate discussion of that abuse, with the result that 

victims of racist, sexist or homophobic abuse on social media are then frequently banned from 

social media for discussing their mistreatment (Guynn, 2019; Watanabe, 2019). 

It is important to see these limitations of regulatory regimes in context, recognising that 

modern approaches to regulating and managing risk have been hugely successful in areas like 

reducing fatal accidents at work, reducing chronic illness and fatal diseases caused by exposure 

to toxins in the workplace or environmental pollution, improving fire safety, transport safety 

and so on (Brione, 2017; Renn et al., 2019). Unfortunately, as society has successfully tackled 

these traditional types of risk, it has in the process created new ones, which are often more 

challenging to address, because they are non-linear and globally connected – for instance, 

climate change (IPCC, 2014), the global financial system (Arner et al., 2019), increasing 

inequality between rich and poor (Atkinson, 2015; WEF, 2020) and of course global pandemics 

(Fan, Jamison, & Summers, 2018). 

4.2 Case example 

In financial services, the role of risk professionals and regulators has evolved significantly 

since the 1980s when risk management first emerged as a specialism. Much recent discussion 
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has understandably focused on regulation and risk management within banks and other 

financial institutions in a post-financial-crisis world, particularly with reference to AI/ML 

technology (Arner et al., 2019; BankofEngland, 2019; FSB, 2017; Kou et al., 2019). However, 

there are also lessons to learn from the role of risk management in the run-up to the financial 

crisis which show some of the reasons that risk management is intrinsically difficult. According 

to Pernell, Jung and Dobbin (2017), the profile of risk professionals was raised in the early 

2000s after the passing in the US of the Sarbanes-Oxley Act in 2002, which laid out new areas 

of responsibility for banks but did not specify detailed compliance standards. To meet these 

new responsibilities, banks began appointing Chief Risk Officers (CROs). Pernell et al present 

evidence that the appointment of CROs was to some extent counter-productive, leading banks 

with a CRO to take on more risk, for two reasons: “organisational licensing”, i.e. the knowledge 

that there was someone responsible for risk management led others in the organisation to be 

less concerned and careful about risk; and the preference of the CROs themselves for new 

forms of derivatives such as credit-default swaps, which they saw as tools for enabling fast and 

precise adjustments to risk exposures in the service of maximising risk-adjusted returns. Thus, 

Pernell et al argue that the rise of CROs since 2002, prompted by legislation to limit bank 

exposure to risk, was in fact a contributory cause of the financial crisis in 2008. 

For these reasons, while there are principles which can guide organisations towards 

managing risk effectively, it is not a function which can ever be fully delegated to specialised 

risk managers, however skilled and conscientious, either by the head of the organisation or by 

the business function managers within it (Kaplan & Mikes, 2012a). The same therefore also 

applies to any technology or risk management system brought in to support risk management, 

at any level, including the model risk management approaches we have described – however 

good it is, responsibility for protecting the organisational systems remains with humans, 

throughout the organisation but especially at the top. This responsibility is not merely formal 

or legal, while the actual work is done by machinery and people elsewhere in the organisation; 

rather it is a real ongoing requirement that top management and business function managers 

stay informed, open to discussion and challenge and aware of potential emerging risks across 

the organisation, particularly where these may interact. And despite the limitations of poor 

regulator funding and regulatory capture, in many industries there is also an important risk 

management role for external regulators (CDEI, 2020; NAO, 2017; Stanley & Wdowin, 2018).  
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5. Conclusion 

Modern risk management has become very effective at dealing with traditional health 

and safety risks (Brione, 2017; Renn et al., 2019). This may be one reason for the common 

tendency noted by Kaplan and Mikes (2012a) to focus risk management efforts almost entirely 

on compliance. As the risk environment becomes more challenging, the need grows for a 

broader and more proactive approach to risk, less purely focused on risk measurement and 

more concerned with organising risk. To develop this successfully, we will need to find ways 

of reliably recognising and routinely overcoming human cognitive biases and systematic errors 

within organisational practice (Kaplan & Mikes, 2012a; Stulz, 2009).  

Some theorists have suggested that in the face of high levels of ambiguity, or 

“unforeseeable uncertainty”, organisations should not attempt to apply traditional risk 

management methods at all. Instead, they should operate on a basis of continuous learning 

and adaptation as changing situations unfold (Sommer & Loch, 2004). These researchers 

argue that, although traditional project risk management methods work well in contexts 

where the project team can reasonably foresee and understand potential threats, in situations 

where it is impossible to fully understand all relevant variables and interactions, the 

traditional methods breakdown. In these circumstances they recommend an approach of 

constant environmental scanning to recognize an unforeseen event when it arises, combined 

with problem-solving and a willingness to modify policies to develop an appropriate response 

quickly.  

Whatever approach is used, it is unarguable that risk management is hard, and while 

there are guidelines and principles which can help organisations to protect themselves more 

effectively, the effort to do so is always to some extent fighting against human nature. The 

technical and human elements of this challenge cannot be dealt with in isolation from each 

other. As Sterman (2002: 4) comments, “For many of the most important problems, there are 

no purely technical solutions. Indeed, there are no purely technical problems.”. Rather, each 

set of problems needs to be considered in terms of a model which recognises our 

interdependence with machines within complex dynamic systems. Within such systems, there 

is potential for humans and machines either to correct each other’s faults and amplify each 

other’s strengths, or conversely to negate each other’s strengths and amplify each other’s 

faults. 
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This relates to the concept of “risk work”, which is defined as “situated human effort, 

in combination with material infrastructure, through which risk management and governance 

practices come to be constructed” (Power, 2016: 3). This perspective examines how risk is 

organized through the interactions of embedded, embodied agents in particular contexts as 

they engage in day-to-day activities (e.g. Palermo, 2016). It assumes that organizational 

encounters with risk are “a routine and systematic part of daily organizational life”(Vaughan, 

2005: 33). This perspective thus adopts a finely grained, bottom-up focus that directs 

attention to “the actions and routines through which organizational actors make sense of risk, 

of themselves and their roles, and collectively try to enact institutional scripts” (Power, 2016: 

8). 

In a slightly different sense, the processes of model risk management and in the Three 

Lines of Defence model as they have been developed and enacted so far in the financial 

services industry have also been largely bottom-up, i.e. they have started with the work that 

individuals are engaged in and have attempted to create processes and structures for and 

around that work to manage the risks arising from it (Cohn, 2019; IIA, 2013; Kosoff, 2016; 

USFederalReserve, 2011). However, we also see a developing critique in the financial 

services industry of “traditional” MRM processes; current practice has been criticised for 

being overly compliance-based and prescriptive, rigid and siloed, and lacking top-down, 

strategic and reflective dimensions (Bridgers et al., 2020; Hill, 2020; Shi et al., 2016). 

Further, there is an emerging awareness that while the Three Lines of Defence model creates 

pathways for issues to be escalated to board level, boards may not always be equipped to 

resolve such issues and will themselves need appropriate experience, guidance and support 

(De Smet et al., 2021; Yoost, 2013). These critiques highlight the inevitable connections and 

overlaps between successful model risk management and enterprise risk management, and the 

need to situate and attend to model risk, both within its immediate human context and the 

wider context of enterprise risk. There is at the same time an ongoing evolution of MRM 

practice within financial services from pure model validation to a risk management practice 

which adds value to the institution (Crespo et al., 2017; Garro, 2020). Outside the 

organisation, regulators also have a critically important if necessarily imperfect role in 

recognising emerging risk and supporting and challenging regulated organisations; so, 

enterprise risk is further nested within industry or sector-wide and even societal systemic risk 

(Arner et al., 2019; BankofEngland, 2019; CDEI, 2020; Ehrmann & Schure, 2019; FSB, 
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2017; Goldin & Mariathasan, 2014; Kou et al., 2019; NAO, 2017; Pernell et al., 2017; Renn 

et al., 2019; Stanley & Wdowin, 2018; WEF, 2020). 

We have argued that model risk is a concept which can usefully be applied in many 

different industries and sectors beyond the financial services industry. Garro makes the point 

that various unfortunate historical incidents which led to huge losses can reasonably be 

described as the result of poor management of model risk, even though they might not have 

been so conceptualised at the time; he refers to the collapse of the Tacoma Narrows Bridge in 

the United States in 1940, which occurred because engineers had modelled the design of the 

bridge without considering the vertical movements of the wind (Garro, 2020). Given our 

definition of a model as any attempt to predict or forecast what will happen given a specific 

set of variables and a relevant set of data, it is evident that such models are everywhere in 

industry and indeed in everyday life. 

While model risk is not a widely used term outside financial services, it is 

increasingly relevant to the activities of companies and organisations using algorithmic 

models, often including machine learning functionality, to process large quantities of data for 

a rapidly expanding range of purposes. As MRM practices mature in financial services, they 

face new challenges because of the vast scale and variety of model-related activity in that 

industry. Meantime, there are lessons from financial services for other organisations about 

how to begin to standardise and scale up the process of prototyping, validating and testing 

individual models, how to establish a model validation and governance framework, how to 

deal with aggregate model risk, and how to nest this successfully within the wider structures 

and processes of enterprise risk management. 

5.1 Directions for future research 

As more organisations start to grapple with the risk implications of the models they 

use, there are opportunities for observational or action research case studies outside financial 

services with organisations establishing a model risk management function and embedding 

MRM practices within a wider enterprise risk management approach.  

A theme running through this article has been the importance of the roles of the 

human users/operators of models, and the need for such roles to be designed to dovetail with 

the models themselves so that the resulting machine-human systems can work harmoniously 

and effectively. Wilson and Daugherty have outlined the (ideally) mutually supportive roles 

of humans and AI/ML systems in achieving organisational goals (Daugherty & Wilson, 2018; 
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Wilson & Daugherty, 2018); yet we cited several studies describing high-friction interactions 

between algorithmic models and respectively, nurses (Russell, 2012), radiologists (Lebovitz 

et al., 2019), telephone salespeople (Bader & Kaiser, 2019) and airline pilots (Hart, 2017). 

More studies are certainly needed to look at how human-machine dovetailing can be 

intentionally designed to work smoothly and efficiently. More encouragingly, we also note 

the existence of ML models which train or support individuals or groups of human workers to 

achieve superior results (Brynjolfsson & McAfee, 2017; Weinstein, 2019); this seems like a 

worthwhile area for further work. 

Regulation of AI/ML itself is likely to expand, but ML applications are also likely to 

be used increasingly to support regulatory compliance in many different fields. We have 

touched on the strengths and weaknesses of algorithms as regulatory tools, but there is 

certainly scope for further research. The problem of social media moderation algorithms 

penalising abuse victims is one which merits further study, for example.  

The work of Pernell et al. (2017) provides a warning of the potential for regulation to 

be counter-productive, and of the ways business priorities and personal incentives for leaders 

can subvert good risk management. Given this stark illustration of Sterman’s “policy 

resistance” (Sterman, 2002), it would be interesting to look at risk management practices in 

an organisation or industry through a dynamic systems lens, with the goal of helping risk 

professionals, business leaders and regulators to proactively identify possible blind spots in 

their approach to both model risk and enterprise risk. There could also be an opportunity to 

use ML to model an organisation’s risk management behaviour. 

Government departments and regulators wanting to rely on algorithmic models for 

efficiency and accuracy will need to make them transparently fair and capable of providing 

explanations of decisions, while at the same time protecting sensitive information – an area 

where greater understanding is certainly required. While existing work has exposed how 

difficult it can be to avoid algorithmic bias, and the problems caused by lack of 

explainability, the trade-offs between ensuring a necessary degree of transparency and the 

need in some sensitive contexts for confidentiality (for example the 2020 A level algorithm 

crisis) have perhaps not yet been fully explored. 

Algorithmic bias and lack of algorithmic explainability are both critical aspects of 

model risk which every organisation considering using ML technologies needs to consider 

and take steps to address in advance of any problems arising. While there is already 
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considerable research in these areas, they will continue to evolve and research will need to 

keep pace to contribute to the establishment of organisational best practice, and to inform 

changes to regulation and the law. Beyond model risk, other technology risks including 

cybersecurity, technology-driven “digital divides”, big data management and issues around 

trust are extremely important and require further study.  

Considered as systems, organisations use model risk management and enterprise risk 

management techniques to protect themselves from internal failures, external attacks and 

environmental shifts; but they can only do this effectively by recognising that they are 

embedded in larger dynamic systems within society, with which they constantly 

communicate – supply chains, communities, industries, markets, ecosystems, nations, trading 

blocs and so on. The management of model risk, including risks specific to ML, is just one 

complex area within a huge range of opportunities and challenges that organisations and 

societies face together in an increasingly interconnected and interdependent world. 
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